(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a(b(x)) → b(a(x))
a(c(x)) → x

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
a(b(x)) →+ b(a(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / b(x)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a(b(x)) → b(a(x))
a(c(x)) → x

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
a(b(x)) → b(a(x))
a(c(x)) → x

Types:
a :: b:c → b:c
b :: b:c → b:c
c :: b:c → b:c
hole_b:c1_0 :: b:c
gen_b:c2_0 :: Nat → b:c

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
a

(8) Obligation:

TRS:
Rules:
a(b(x)) → b(a(x))
a(c(x)) → x

Types:
a :: b:c → b:c
b :: b:c → b:c
c :: b:c → b:c
hole_b:c1_0 :: b:c
gen_b:c2_0 :: Nat → b:c

Generator Equations:
gen_b:c2_0(0) ⇔ hole_b:c1_0
gen_b:c2_0(+(x, 1)) ⇔ b(gen_b:c2_0(x))

The following defined symbols remain to be analysed:
a

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
a(gen_b:c2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Induction Base:
a(gen_b:c2_0(+(1, 0)))

Induction Step:
a(gen_b:c2_0(+(1, +(n4_0, 1)))) →RΩ(1)
b(a(gen_b:c2_0(+(1, n4_0)))) →IH
b(*3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
a(b(x)) → b(a(x))
a(c(x)) → x

Types:
a :: b:c → b:c
b :: b:c → b:c
c :: b:c → b:c
hole_b:c1_0 :: b:c
gen_b:c2_0 :: Nat → b:c

Lemmas:
a(gen_b:c2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_b:c2_0(0) ⇔ hole_b:c1_0
gen_b:c2_0(+(x, 1)) ⇔ b(gen_b:c2_0(x))

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
a(gen_b:c2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(13) BOUNDS(n^1, INF)

(14) Obligation:

TRS:
Rules:
a(b(x)) → b(a(x))
a(c(x)) → x

Types:
a :: b:c → b:c
b :: b:c → b:c
c :: b:c → b:c
hole_b:c1_0 :: b:c
gen_b:c2_0 :: Nat → b:c

Lemmas:
a(gen_b:c2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_b:c2_0(0) ⇔ hole_b:c1_0
gen_b:c2_0(+(x, 1)) ⇔ b(gen_b:c2_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
a(gen_b:c2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(16) BOUNDS(n^1, INF)